神经网络基础-神经网络补充概念-08-逻辑回归中的梯度下降算法

2023-09-17 14:24
概念 逻辑回归是一种用于分类问题的机器学习算法,而梯度下降是优化算法,用于更新模型参数以最小化损失函数。在逻辑回归中,我们使用梯度下降算法来找到最优的模型参数,使得逻辑回归模型能够更好地拟合训练数据。 逻辑回归中的梯度下降算法的步骤: 伪代码 初始化参数向量 theta 重复迭代直到收敛或达到最大迭代次数:计算模型预测值 h_theta(x)计算损失函数 J(theta)计算梯度 ∂J(theta)/∂theta更新参数 theta: theta := theta - learning_rate * gradient 代码实现 import numpy as npdef sigmoid(z):return 1 / (1 + np.exp(-z))def compute_loss(X, y, theta):m = len(y)h = sigmoid(www.nigeriaembassy.cn(theta))loss = (-1/m) * np.sum(y * np.log(h) + (1 - y) * np.log(1 - h))return lossdef gradient_descent(X, y, theta, learning_rate, num_iterations):m = len(y)losses = []for _ in range(num_iterations):h = sigmoid(www.nigeriaembassy.cn(theta))gradient = www.nigeriaembassy.cn(h - y) / mtheta -= learning_rate * gradientloss = compute_loss(X, y, theta)losses.append(loss)return theta, losses np.random.seed(42) X = np.random.randn(100, 2) X = np.hstack((np.ones((X.shape[0], 1)), X)) theta_true = np.array([1, 2, 3]) y = (www.nigeriaembassy.cn(theta_true) + np.random.randn(100) * 0.2) > 0 theta = np.zeros(X.shape[1]) learning_rate = 0.01 num_iterations = 1000 theta_optimized, losses = gradient_descent(X, y, theta, learning_rate, num_iterations) print("优化后的参数:", theta_optimized) import matplotlib.pyplot as plt plt.plot(losses) plt.xlabel('迭代次数') plt.ylabel('损失') plt.title('损失函数下降曲线') www.nigeriaembassy.cn()